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A geometrically non-linear model of the rotating shaft is introduced, which includes
KaH rman non-linearity, non-linear curvature e!ects, large displacements and rotations as
well as gyroscopic e!ects. Through applying Timoshenko-type assumptions, the shear
e!ects are also included in the model. Convenient matrix descriptions are used in order to
facilitate the analysis based on Galerkin and continuation methods. The model is used to
analyze the phenomenon of internal resonance. The in#uence of some of the system's
parameters on the amplitude and frequency of self-excited vibration is investigated.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In order to analyze the physical phenomena in shafts rotating with a velocity close to the
critical rotation speed it is necessary to use non-linear models, which due to the large
amplitudes of vibration should consider the e!ect of geometrical non-linearities. For shafts
made of a material with very small internal damping, very interesting steady state vibration
phenomena can be excited. They can be explained on the basis of the phenomenon of
internal resonance.
Also very important is the in#uence of internal damping, which has a destabilizing e!ect

and can cause self-excited vibrations [1, 2]. Another factor, which can have a destabilizing
e!ect on the system is a constant external loading, especially of the follower type. This class
of load can comprise the axial force described, e.g., in reference [3] and the torque applied to
the shaft, which is the main load transmitting power in the angular motion. The torque has
an important e!ect on the stability regions and in a general case its presence reduces the
system's critical speed [4].
In the analysis of non-linear phenomena the Euler-type models of slender shafts are

considered. In this case, the non-linearity is the result of the in#uence of the axial force on
the transversal vibrations. Shaw and Shaw [5] considered the problem of bifurcations in
a rotating shaft, using a non-linear model. The shaft has been modelled as an Euler beam
with KaH rman non-linearity, simply supported at both ends. A similar model, but with
a rigid disk attached at the shaft middle point was also considered by Chang and Cheng [6].
In both these works, the center manifold theory has been used to obtain analytical formulae
combining the system's parameters, the frequency and the amplitude of vibration.
In the papers by Chen and Sheu [3], Han and Zu [7] as well as by Lee et al. [8], the shaft

has been modelled as a Timoshenko beam, but with consideration of internal damping or
geometrical non-linearities. Unfortunately, the analysis of a linear system is not suitable for
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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predicting the amplitudes of self-excited vibration. To this end, it is necessary to consider
a non-linear model accounting for geometrical constrains, which limits the amplitude of
vibration. By additionally modelling the e!ect of the torque and the axial force, one has to
consider a spatial model, which describes the coupled #exural, axial and torsional vibrations.
In the present paper a geometrically non-linear model of a rotating shaft is considered,

which accounts for both large displacements and rotations as well as for large deformations.
The formulation is based on the Timoshenko}Reissner model [9] and the modelling
approach of Simo and Vu-Quoc [10] is used. In spite of the assumed simpli"cation, the
present model describes more exactly the in#uence of the geometrical constraints than
models investigated upto now. Additionally, the in#uence of shear, rotational and
longitudinal inertia and external and internal damping is considered. The model allows
investigation of coupled torsional, longitudinal and #exural vibrations.
The method of analysis applied in the present paper is based on the Galerkin method. As

a result of discretization of the system the analysis is reduced to the investigation of the
so-called &&matrix amplitude equation'' [11, 12] which describes the non-linear eigenvalue
problem. Thanks to application of some properties of the Kronecker product [13] the form
of matrix amplitude equation obtained can be described by matrices independent of state
vector co-ordinates. It allows simple prediction of the tangent matrix used in the iterative
solution of the non-linear eigenvalue problem. To solve this problem continuation methods
are usually applied [14}22].
A theoretical basis of the continuation methods and bifurcation analysis can be found in

the book by Seydel [14]. The important works in the domain on the non-linear eigenvalue
problems and the numerical bifurcation analysis of periodic solutions were published by
Shro! and Keller [15], Doedel et al. [16, 17] and Meerbergen and Roose [18].
The approach to the analysis of the phenomena of internal resonance used in the present

paper is similar to that described e.g., in the papers by Lewandowski [11, 12] and Leung
and Fung [19], which concern the problem of the bifurcation of the solutions which
describe the free vibrations of slender beams.
Another approach to the bifurcation analysis was applied in papers [15}18, 20}22]. In

these papers, the authors deal with the e$cient computation and bifurcation analysis of
periodic solutions of large-scale dynamical systems and the determination of their stability.
These systems are results of space discretization of partial di!erential equations. To solve
the non-linear two-boundary problem the multiple-shooting or single-shooting methods
[20], collocations and "nite di!erence techniques [22] are applied. In spite of longer
numerical calculation time, the methods described in papers [15}18, 20}22] are more
general. These methods make possible bifurcation analysis of solutions for considerably
wider classes of dynamical systems.
After a short description of the model, a method is discussed whereby the problem of

solving the partial di!erential equations which describe the dynamics of the system is
reduced to an algebraic non-linear problem. Based on the continuation methods some
dynamical characteristics describing the phenomenon of internal resonance and self-excited
vibrations were obtained.

2. THE MODEL OF THE SYSTEM

2.1. MAIN ASSUMPTIONS. GENERAL FORM OF THE EQUATIONS OF MOTION

In the derivation of the equations of motion it is helpful, especially for spatial beam
models, to introduce a moving co-ordinate system rigidly connected to the shaft
cross-section [23], the so-called body frame shown in Figure 1.



Figure 1. Reference and current con"guration.
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By introducing the body frame, the description of the motion of a continuous system can
be reduced to the analysis of the motion of a co-ordinate system, the position of which is
given at any time by the displacement vector u and the rotation matrix �. In order to de"ne
the strain tensor and the internal forces and moments, one considers two con"gurations: the
current con"guration for the deformed state and the reference con"guration for the
undeformed state. In most analyses of the vibration of beams one also assumes that the
deformation of the beam cross-section can be neglected. It is possible to derive the
equations of motion by applying the balance of momentum and angular momentum in the
current con"guration, as discussed in references [23, 24]. By applying this approach, one
obtains in a general case the following system of matrix equations:

B
�
uK#�

�
u� "� (n�#��

�
n), B

�
�� #�� B

�
�"m�#��

�
m#(e�

�
#��

�
)n. (1)

In equations (1), the time derivatives with respect to time are denoted by a dot, whereas
a prime stands for the spatial derivatives with respect to the natural co-ordinate s.
Moreover, a matrix notation of the cross product has been used a�b"a� b, where in
a general case the skew-symmetric matrix a� is related to a vector a as

a� "

0 !a
�

a
�

a
�

0 !a
�
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�

a
�

0

, a"�
a
�

a
�

a
�
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To introduce the notation used in the sequel, a skew-symmetric matrix e�
�
corresponds by

relation (2) to a unit vector tangent to the beam axis in the reference con"guration. The
matrix �J "���� de"nes by formula (2) the angular velocity vector � in the body frame. In
the sequel, one also uses two inertia matrices B

�
"�AI and B

�
. The second of these

matrices represents the tensor of the moments of inertia of the cross-section and is diagonal
in the case when the co-ordinate axes coincide the principal axes. Moreover, the symbol �

�
will stand for the coe$cient of external damping.
Important non-linear terms appearing in equation (1) are the terms�J B

�
�, responsible for

the gyroscopic e!ects. The equations in form (1) are also valid in the case of large rotations
of the shaft cross-sections. In this case, there is an e!ect of the terms which include the
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rotation matrix �. The rotation matrix is a non-linear function of the rotation
pseudovector, as will be discussed later on. Additional non-linear terms will result after
considering the physical relations between the generalized forces n, m and the deformation
vectors �

�
, �

�
, which are also non-linear functions of the displacement and rotation vectors.

The vector �
�
mostly includes the e!ects of axial deformation and shear in accordance with

the Timoshenko model (translation of the body frame), whereas the vector �
�
describes the

beam bending and torsion (rotation). The vectors �
�
, �

�
are de"ned as in reference [23], by

the relations

�
�
"�� (u�#e

�
)!e

�
, ��

�
"��� �. (3)

The vector �
�
is related to the skew-symmetric matrix ��

�
by the general rule (2). The relations

given by equations (3) have been derived by assuming that the beam cross-sections do not
undergo warping.
By introducing an auxiliary vector �"[�

��
, 2�

��
, 2�

��
]�, the components of which

include the non-zero components of the strain tensor, one can write the � vector in the form

�"(I#�
�
e
�
��
�
) �

�
, (4)

where

�
�
"�

�
#��

�
�"�

�
#�� ��

�
. (5)

Here � is a vector which describes the position of a point in the system rigidly connected
with the beam cross-section (the body frame). After introducing relations (3) and (5) into
equation (4) one can show that the components of the � vector are identical as those used,
e.g., in reference [25].
The use of the auxiliary vector � helps to facilitate considerably the further description of

the model. Using this vector, and assuming linear physical relations between the stresses
and deformations, one can write the constitutive equations in the form

�"E(�#�
�
�� ). (6)

Here �"[�
��
, �

��
, �

��
]�, and �

�
is the coe$cient of internal damping. The components of

the diagonal matrix E"diag (E, kG, kG ) depend on Young's modulus E, the shear modulus
G and the shear factor k. By using equations (4) and (6) it is possible to calculate the vector of
the generalized forces de"ned in the body frame as

n"�
�

�dA, m"�
�

�� �dA. (7)

Here �"x
�
e
�
#x

�
e
�
and dA"dx

�
dx

�
. It can be seen that the variables of integration

appear in the matrix �J . Moreover, this matrix is also a part of de"nition (5) of the vector �
�
,

which then de"nes � by relations (4), (6). After the necessary integrations, and assuming that
the integrals including odd powers of �� (e.g., the static moments of the cross-section) vanish,
one obtains
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The J
�
matrices (k"1,2,3) are diagonal matrices in the case of beams with a circular

cross-section. The components of the J
�
"EA matrix include the axial sti!ness and two
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shear sti!nesses, those of the J
�
matrix include the torsional sti!ness and the bending

sti!nesses. The matrices J
�
and J

�
can be de"ned as

J
�
"

1

A �
�

�� �� � dA, J
�
"�

�

�� E�� �dA. (9)

The non-linear term of the n vector including the �
�
vector is of much importance in the

analysis of vibration, especially when shear e!ects are taken into account and for the
boundary conditions when the two beam ends cannot displace. The discussed non-linear
term accounts for the non-linear dependence of the axial force on the derivatives of the
transverse displacement and is the frequently analyzed KaH rman non-linearity. The
remaining non-linear terms, which depend on the �

�
vector, can become important in the

analysis of spatial beams in the presence of coupling between the #exural, torsional and
longitudinal modes. The system of equations (1), (8) with de"nitions (3) describes
a non-linear, geometrically exact model of the analyzed system.

2.2. THE EQUATIONS OF MOTION OF THE SHAFT

The undisturbed angular motion of the shaft, in the absence of vibration, can be described
by the rotation matrix given in the simple form

� (t )"

1 0 0

0 cos	 (t) !sin	 (t)

0 sin	 (t) cos 	 (t)

, (10)

in the case of rotation with a constant speed 	 (t)"�
�
t. In the presence of vibration, after

the excitation of free, forced or self-excited vibration, the absolute motion of the shaft can be
considered as a superposition of a rotation about a steady axis and of the motion resulting
from vibration. This absolute motion will be further characterized by the rotation matrix,
assumed to be of the form

� (s, t )"� (s, t )�(t). (11)

The rotation matrix � describes the rotation of the local frame with respect to the inertial
frame, whereas the matrix� describes the motion of the body frame with respect to the local
frame (Figure 1). The equations of motion of the shaft are obtained by introducing form (11)
of the � matrix into equation (1) and (3). Moreover, it is necessary to express the vector �,
which is related to the matrix �� "���� , by the vectors � (which describes vibration) and
�

�
(which describes the shaft rotation). For the vector � one gets

�"���#�
�
"��(�#�

�
). (12)

Here one uses the fact that for the rotation matrix in the form (10), the vector
�

�
"���

�
"�

�
e
�
. The time derivative of the vector � is given by the formula

�� "�� (�� #�
 �
�
�). (13)

Since expressions (11}13) include the time-dependent rotation matrix � (t), the resulting
equations will, in general, be non-linear parametric equations. Under some assumptions,
mainly about the shape of the beam cross-section (axial symmetry), one can obtain
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equations with the coe$cients which are independent of time. To this end, the vectors �
�
and

�
�
can be written in the form
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�
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In order to calculate the generalized internal forces (8) it is necessary to calculate the time
velocities of vectors (14), which are found to be equal to
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Equations (16) are the matrix form of the vector expressions between the local and global
derivatives. Similar to equations (14), one can write the internal forces in the form

n"�� (N#N
�
), m"�� (M#M

�
) . (17)

Equations (17) include the constant terms N
�
andM

�
. By making use of equations (11}17)

one can then transform equations (1) and (8) to a form in which the matrix � (t ) appears
only in the expressions
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In the case of a shaft of circular cross-section, matrices (18) are independent of time
(J �

�
"J

�
, B �

�
"B

�
). Therefore, the parametric e!ects can show in the absence of symmetry of

the elastic properties (the matrices J �
�
) or of the inertial properties (the matrices B �

�
). The

"nal form of the equations of motion used in the subsequent analysis has the form
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Here,
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The matrix B
�
describes the gyroscopic e!ects. The equations for the generalized forces N,

M have a similar structure as equations (8) discussed earlier
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Here, the matrix U"I#�
�
�
 �

�
comprises the e!ect of the internal damping, and has

a deciding e!ect on the stability.
The equations of motion of a shaft presented above, reduce in the linear case to the

equations which were considered e.g., in references [3, 8]. A di!erent form of these equations
(see e.g., references [5, 6]) can be obtained when one makes use in the analysis of the
displacement vector measured, as the generalized forces, in the co-ordinate system which
rotates with the angular velocity �

�
relative to the inertial frame. These equations include

additional non-linear terms, mainly of inertial character, due to the fact that in this case the
displacements are measured in a moving frame. On the contrary, in this case one obtains
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simpler expressions for the internal moments and torques. Also, for this model one can
reduce the analysis of steady vibration to the study of equilibrium state. Below,
a comparison with the results obtained in references [5, 6] will be included, thus verifying
the model used in the present approach.

2.3. MATRIX EQUATION OF MOTION

Equation (19) and (21) supplemented by relations (15) and (16) describe a geometrically
exact model of a rotating shaft. In this form, this is a system of partial di!erential equations
of the "rst order with respect to the natural co-ordinate and of the second order with respect
to time. Most of the non-linearities which appear in these equations are quadratic forms of
the components of the vectors u, 
, N, M. For example, the non-linear terms include the
expressions ��

�
n, ��

�
m which describe the non-linear curvature e!ects, the expression ��

�
n

which is a result of using the Timoshenko model or the gyroscopic non-linearity �� B
�
�.

This last non-linear term is important in the analysis of coupled #exural and torsional
vibrations. Also, the rotation matrix � used here after Argyris [26] has been described by
an expression which is close to a quadratic form. This matrix can be approximated as

�"I#
I #�
�

I �. (22)

The vector 	
�
, which describes the in#uence of the curvature and which depends on the

matrix �, can be expressed in the form
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 �. (23)

Similarly, one can approximate the vector 	
�
to
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I )u�#e�

�

!�

�

I e�

�

 . (24)

The above discussion suggests that one can consider a simpli"ed model in which all the
non-linearities of the second order are preserved [27]. In comparison with the equations
most frequently used, which are derived by energy methods, the present approach
corresponds to preserving also the terms of the third order. Even though it is possible to
reduce the present set of equation to the usual form, this reduction is not convenient due to
the proposed analysis method. The possibility of writing the simpli"ed set of equations used
by the present author in the form of a one-matrix equation is shown below. This form
facilitates the description of the analysis method and more importantly the preparation of
the numerical algorithm. To show how the system can be reduced to a one-matrix equation
one introduces the extended state vector x of dimension N"12, made up of the
three-dimensional vectors of generalized displacements and internal forces

x�"[��
�
, ��

�
, ��

�
, ��

�
]"[u�, 
� ,N�,M�]. (25)

After using the discussed simpli"cations, all non-linear terms which appear in the equations
of motion can be expressed by two non-linear vector functions. These functions depend on
the components of the state vector (or their derivatives) and are de"ned as

f (P, �� , ��)"�
 �P��"
�
�
���

[e� �
�
� (e�

�
P)] (��� �� ),

g (P, �� , ��)"e
�
���P��"

�
�
���

[(e
�
e�
�
)� (e�

�
P)] (��� ��). (26)
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Here e
�
is a unit vector of dimension 3. In writing formulae (26) the Kronecker product of

two matrices has been used [13]. The Kronecker product notation proves useful not only in
the transformation of the equations of motion but also for their discretization discussed
later on in the paper. In the general case of arbitrary matrices A and B, the Kronecker
product A�B can be de"ned as a supermatrix in which the ijth submatrix is A

��
B.

The constant matrix P appearing in relations (26) has components which depend on the
parameters of the system. Its detailed form depends on the non-linear term being
considered. For example, after simplifying the non-linearity ��

�
n to the quadratic form one

obtains the term 
I �N"f (I, � �
�
, �

�
), when for the non-linearity e

�
	�
�
J �
�
	�
�
appearing in

equation (21) one obtains in a similar way the term e
�

��J �

�

Q �"g (J �

�
, � �

�
, �� �

�
).

In order to reduce equations (15), (19) and (21) to the one-matrix equation one needs to
use the identity

��� ��"��� (x�x). (27)

The rectangular matrices ��� (�, �"1,2,4) with dimension (3��12�) have a relatively
simple form. For given values of the indices �, � the only non-zero elements of the matrices
��� , which are all equal to one, are given by the indices

p"3 (m!1)#n, q"36(�!1)#12 (m!1)#3(�!1)#n, (28)

where m, n change within (1}3). Now, equations (26) can be written as

f (P, �� , ��)"f�� (P) (x�x), g (P, �� , ��)"g�� (P ) (x�x). (29)

The (3�12�) rectangular matrices f�� , g�� are de"ned as

f�� (P)"
�
�
���

[e� �
�
� (e�

�
P )]��� , g�� (P)"

�
�
���

[(e
�
e�
�
)� (e�

�
P )]��� . (30)

Finally, the equations of motion can be written in the form of a matrix partial di!erential
equation as

�
�
���

�
�
���

A�
�


�	�x


s�
t�
#

�
�

�� ���

�
�

�� 
��

F ��
�
�


�	�x


s �
t�
�


 �	
x


s�
t 
�"0. (31)

Here i, j"0, 1 (the system is of the "rst order with respect to the natural co-ordinate s) and
k, l"0, 1, 2 (second order with respect to time).
The determination of the square matricesA �

�
(N�N), which describe the linear term, does

not cause problems. The rectangular matrices F ��
�

(N�N�), which account for the

geometric non-linearities, can be expressed through matrices (30). The formulae for the
non-zero matrices A �

�
and F ��

�

are provided in Appendix A. Form (31) of the equations of

motion helps considerably in the presentation of the analytical method and of the
construction of a suitable algorithm for numerical calculations.

3. THE GALERKIN METHOD

A method of discretization which allows reduction of the solution of the non-linear
partial di!erential matrix equation (31) to the solution of a non-linear algebraic equation is
discussed below. This algebraic equation will be called the matrix equation of amplitudes.
The approach is based on the Galerkinmethod, and the equations are "rst discretized in the
space domain followed by the time discretization. In discussing the space discretization, no
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special form of the shape functions is assumed. However, in order not to complicate
the presentation too much, the same shape functions are assumed for all the components of
the shape vector. Other discretization methods have also been used for comparison, and the
results discussed in the present paper were found to agree with those obtained using the
Rayleigh}Ritz method. It has been found that the Galerkin method applied to the space
formulation is much less sensitive (e.g., to the shear-locking problem) than the methods (e.g.,
the Rayleigh}Ritz method) in which only the approximation of displacements and rotation
angles is used. In all numerical calculations one uses the polynomial B-spline functions
discussed e.g., in reference [28].

3.1. SPATIAL DISCRETIZATION

One seeks the solution of equation (31) in the form

x (s, t)"V� (s)y (t), V� (s)"I
	�


�v(s)� . (32)

Here, v(s) is a vector of the approximation functions with dimension M and I
	�

is a unit

matrix of dimensionN. To obtain the discretized equations of motion, the Galerkin method
is used. To this end, one multiplies the left side of equation (31) by the matrix V, and
integrates the result in the interval (0, l ). To avoid the necessity of integrating at each step of
the iteration method, it is necessary to make additional transformations to the equation so
obtained. For this, the identity

VA �
�
V�

�
"A �

�
� (vv�

�
) (33)

is useful, where v
�
"v (s), v

�
"v �(s). One can also show that
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�
�V�

�
)"[F ��

�

� (v�

�
�vv�

�
)]
 (N,M), (34)

where matrix 
 is de"ned as
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� I
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� I
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. (35)

In equation (35), e(M)m (m"1,2,M) is a system of unit vectors of dimensionM, whereas I
	�


and I
	�

are the unit matrices of the respective dimension. In spite of the apparently complex

form of matrix 
 which has dimension (N�M��N�M�), each of its rows has only one
non-zero element, which is equal to 1. The elements of matrix 
 can be written in the form



�


"� i
�i
�
� j

�j
�
�k

�k
�
� l

�l
�
, (36)

where

n"(i
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�
!1)M�#(k
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!1)M#l

�
,

m"(i
�
!1)M�N#( k

�
!1)MN#(j

�
!1)M#l

�
. (37)

In formulae (36) and (37) the indices i
�
, i

�
, j

�
, j

�
assume values from within the range

(1,2,N), and k
�
, k

�
, l
�
, l
�
have values from (1,2,M). Due to the form of the 
 matrix, the

multiplication of an arbitrary matrix A by 
 results in the interchange of the corresponding
columns, according to the scheme [A
]lm"�N�M�

���
A


�
�
�


"A

� 	



, where n(m) can be
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easily calculated, especially numerically, by substituting into relations (37) i
�
"i

�
, j

�
"j

�
,

k
�
"k

�
and l

�
"l

�
in the respective ranges. Now if one introduces the notation

�
�
"�




�

v(s) v�
�
(s) ds , �

��
"�




�

v�
�
(s)�v(s )v�

�
(s) ds, (38)

one can write the resulting system of ordinary time di!erential equations in the form

�
�
���

A
�

d�y

dt�
#

�
�

�� 
��

F
�
 �
d�y

dt�
�
d
y

dt 
 �"0. (39)

Here

A
�
"

�
�
���

A�
�
��

�
, F

�

"

�
�

�����

(F ��
�


��
��
)
 (N,M ). (40)

The dimensions of the square matricesA
�
as well as the rectangular F

�

are now given by the

productNM, where N is the dimension of the state vector x andM is the dimension of the
shape function vector.

3.2. TIME DISCRETIZATION

One repeats the Galerkin method for the system of equations (39) by assuming the
approximate solution in a form similar to equation (32)

y(t)"W� (t)a, W� (t)"I
	��


�w (t)� . (41)

In studying steady state vibrations, e.g., steady state undamped or self-excited vibration, one
can assume the components of the w vector of dimension ¸"2K#1 in the form of
periodic functions cos k�t, sin k�t. Due to the non-symmetric, in general, character of
vibration it is necessary to also include a constant term (e.g., constant components of axial
forces). One assumes the approximate solution in the form

w� (t)"[1, cos�t, cos 2�t,2,cosK�t, sin�t,2,sinK�t] . (42)

In applying the Galerkin method it is necessary to calculate the integrals

�
�
"�

�

�

w
d�w�

dt�
dt, �

�

"�

�

�

d�w�

dt�
�w

d
w�

dt 

dt . (43)

Moreover, one can use the following relations, which are a result of the assumed
solution (42):

d�w�/dt�"w����� . (44)

The matrix � has the form

�"�
0 T

!T 0 � (45)

and the elements of the matrix T are given by the formula

T
�


"(n!1)�

���
, n"1,2,K#1, m"1,2,K. (46)
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Equations (43) can now be written in the form

�
�
"�

�
���� , �

�

"�

��
(���� 
)��	
 . (47)

Therefore, one has only to calculate matrices�
�
and �

��
. Since �

�
is a diagonal matrix of

dimension (¸�¸), one can trivially calculate the inverse of this matrix. The matrix �
��
is

rectangular and has dimension (¸�¸� ). After applying the Galerkin method one obtains
a system of equations, which upon multiplication from left by the matrix I

	��

� (�

�
)��,

can be reduced to the form

g(a,�)"A (�)a#F (�) (a�a)"0, (48)

Here, the notation

A"

�
�
���

A
�
�����, F"

�
�

�� 
��

[F
�


��(���� 
)]
(NM,¸ )��	
 (49)

is used in which

�"(�
�
)���

��
. (50)

Equation (48) is called the matrix equation of amplitudes. It gives a relation between the
amplitude vector a and the frequency�. The main advantage of this equation is the fact that
the matrices A and F de"ned by formulae (40) and (49) do not depend on the state vector
co-ordinates. They are expressed by Kronecker products of matricesA �

�
, F ��

�

depending only

on the parameters of the investigated system and the matrices�
�
, �

��
,�

�
,�

�

, which depend

on the assumed approximating functions. For some qualitative investigations, at the
beginning of the iterative process of solution of non-linear problem (48), the values of
corresponding integrals (38) and (43) can be predicted. By this approach the application of
the Galerkin method leads practically to the prediction of the Kronecker products of
already known matrices. It allows considerable reduction in the time of numerical
calculations.

3.3. SOLUTION OF MATRIX AMPLITUDE EQUATION

The general form of the non-linear problem (48), which uses the de"nition of the
Kronecker product of two matrices to write the non-linear terms, is very convenient in the
numerical analysis. Based on form (48), one can easily calculate the tangent matrix, which is
given by

g
�
"A#F (a� I

	�

#I

	�

�a), (51)

where S"NM¸. The tangent matrix (51) is used in the Newton}Raphson method. In
a similarly simple way one can calculate the Hessian matrix of second derivatives given by
a rectangular matrix g

��
"2F. In the analysis of the free vibration problem it is convenient,

based on formula (49), to group the terms of the Amatrix for di!erent powers of�. It allows
determination of the vector g� which is the derivative of equation (48) with respect to the
parameter � used in the sequel to "nd the bifurcation points.
To solve the non-linear problem (48) iterative continuation methods are usually used

where the next point of some characteristics of the system is predicted on the basis of the
solution at previous point. To this end, it is convenient to supplement an additional
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constraint equation (parameterizing equation (see, e.g., references [15, 20]). In the
calculations presented below, applying the method based on the increment of the arc length
as the control parameter, the following form of equation proposed by Cris"eld [29] is used

h (a)"�a��a!(��)�"0. (52)

Here �a"a�!a��� is the increment of the amplitude vector between two points lying on
the determined characteristics.
To this end it is noted that the systems described in the paper are autonomous. To

eliminate the ambiguous solutions the initial phase was "xed on the basis of the phase
condition (see, e.g., reference [14]). This condition can be easily realized by comparing to
zero one of the components of the vector of amplitudes. Applying the continuation
methods, the so-called primary path (or "rst main branch) can be predicted. Their graphical
illustration, in case of free vibration, are the so-called backbone curves. To this end, the
primary bifurcation points, which are the solution of the linear problem connected with the
non-linear one, should be predicted. The suitable normalized solution of the linear problem
can be taken as the start solution in the continuation method. By investigation of the
internal resonance phenomenon the additional paths of solutions (so-called
post-bifurcation paths or secondary branches) starting at the secondary bifurcation points
should be predicted. To "nd the secondary bifurcation points the sign of the determinant of
the tangent matrix was checked. At the critical points det g

�
(a*,�*)"0 to distinguish the

bifurcation and limit points, the following condition was checked (see, e.g., reference [12]):

g���"0. (53)

Here, � is the eigenmode corresponding to the zero eigenvalue of the matrix g
�
. If condition

(53) is not satis"ed at a critical point, this is a limit point and to "nd the next point on the
curve one can use the Newton method.
To "nd the post-bifurcation branch, one uses the vector �, which is conveniently

normalized from the condition ���"�a*�. One can then look for the "rst approximation as

� �
�
"�*, a �

�
"a*#��. (54)

From the numerical simulations it has been found that good convergence is achieved taking
the coe$cient � from within the range (0)01}0)1).

4. NUMERICAL EXAMPLES

The non-linear shaft model presented above and the proposed method of analysis were
applied to the investigation of self-excited vibration and the internal resonance
phenomenon. To present the results of numerical analysis, non-dimensional quantities were
used by dividing the amplitudes by the radius of inertia (�) of the cross-section, and giving
the frequency relative to the lowest frequency �

�
of a shaft in the absence of rotation

(�"�/�
�
). The parameter �"l/r (where l is the length and 2r the diameter of the shaft)

denotes the shaft slenderness.

4.1. INTERNAL RESONANCE

In the paper by Leung and Fung [19] the phenomenon of internal resonance was shown
for the case of hinged}clamped (type 1 :3) and clamped}clamped beams (type 1 :5).



Figure 2. Backbone curves of simply supported shaft for �"25 and �"5: (a) "rst harmonic u
�
; (b) "rst

harmonic u
�
; (c) third harmonic u

�
; (d) third harmonic u

�
.
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Lewandowski studied, in references [12, 30], internal resonance in single-span and
multiple-span simply supported beams. This is done despite the fact that the analysis of the
vibration of beams, as well as a system more related to the present study as described in
reference [31] consisted of a cantilever beam attached to a rotating body suggesting the
possibility of internal resonance appearing in these kind of systems.
The chosen results of a numerical analysis, concerning the shaft simply supported with

axially "xed ends, were presented. In Figure 2, the dynamical characteristics for the "rst and
third harmonics of the transverse displacements in two perpendicular directions u

�
and u

�
at the "xed point s"l/4 with �"25 and �"�

�
/�

�
"5 are shown. The plots shown in

Figure 2 were obtained by approximation of the displacements in the direction by the cosine
series and those in the other direction by the sine series, which is a consequence of the
assumed phase condition. Therefore, the curves with di!erent signs of the &&amplitudes''
(curve P

�
B
�
*see Figures 2(a) and 2(b), curve P

�
B
�
*Figures 2(c) and 2(d)) can be

interpreted as the characteristics of the backward modes, whereas the curves with positive
&&amplitudes'' (curves P

�
B
�
, P

�
B


) are related to the forward modes.

The symbols P
�
are used to denote the primary bifurcation points, whereas the secondary

bifurcation points are denoted as B
�
. Here, the curves with the origin at points P

�
and P

�
are

the primary paths, whereas the curves starting points P
�
and P

�
are the subharmonic curves

of the next non-symmetric vibration modes. The points P
�
and P

�
are determined by the

suitable submultiples of the third and fourth eigenfrequencies. The subharmonic branches
play a role in the explanation of the internal resonance phenomenon.
By analyzing the matrix equation of amplitudes it is possible to predict the secondary

bifurcation points using the corresponding condition for the tangent matrix. It is shown
that on the path related to the forward mode there are three bifurcation points B

�
, B

�
and

B
�
. On the path related to the backward mode there are two bifurcation points, B

�
and B

�
.
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These calculated points are the start points for the post-bifurcation paths illustrating the
process of modes changes during the internal resonance phenomenon.
At the "rst bifurcation point B

�
the primary path P

�
B

�
intersects the post-bifurcation

path A
�
B
�
A

�
. The curve A

�
B

�
A

�
is, despite the apparent similarity, di!erent for the

displacements u
�
and u

�
. When the amplitude of the displacements falls o! with frequency

in one direction it increases in the other direction (the continuous lines) and vice versa (the
dashed line). An interesting phenomenon takes place in which the forward and backward
modes are excited with the same frequency. This phenomenon could be termed as the
internal resonance of type 1 : 1, even though in this case there in no visible transformation of
the forward mode of vibration into the backward one. An arbitrary point on the shaft axis
moves in this case on an ellipsis.
It should be pointed out that a similar mode of vibration which is a superposition of the

forward and backward modes is also possible in a linear system, but due to the fact that the
frequencies of the two modes are slightly di!erent, the trajectory of a point on the shaft axis is
an ellipsis which lies in a plane rotating relative to the "xed frame. Moreover, the velocity at
which the plane rotates is equal to the di!erence of the frequencies of the forward and backward
modes. As a result, in the "xed frame one can observe the characteristics beat pattern.
Except secondary bifurcation points B

�
}B

�
, stepping out on primary paths, one can

detect additional bifurcation points B
�
}B

�
lying on post-bifurcation paths and belonging

simultaneously to suitable subharmonic branches.
The curve B

�
B

�
illustrates the behavior of the system with three-times higher frequency.

Lying on this curve is the bifurcation point B
�
, through which passes the subharmonic

curve P
�
B
�
. The curve P

�
B
�
begins at point �"�

�
/3, where �

�
is the non-dimensional

frequency of the linear system corresponding to the non-symmetric mode of backward
precession. At point B

�
the internal resonance of type 1 :3 between the symmetric forward

and non-symmetric backward modes takes place and some analogy to the behavior of
simply supported beams discussed in reference [30] can be observed.
The post-bifurcation curve B

�
B


illustrates the behavior of the system in going from the

symmetric forward mode to the non-symmetric forward mode.
The secondary branches B

�
B
�
and B

�
B
�
describe the internal resonance between the

symmetric and non-symmetric backward modes and between the symmetric backward and
non-symmetric forward modes.
The variation of the parameters � and � do not cause the qualitative changes of the

characteristics of the system investigated. Increasing the coe$cient � and decreasing the
value of the rotation speed � decreases the di!erence between values of frequency at the
points B

�
for k"2, 3, 4, 5. To illustrate the in#uence of the parameters � and � the values of

frequency at the discussed bifurcation points obtained for the Euler- and Timoshenko-type
models are given in Table 1. For �"0 (beam) all the values are the same (point B

�
). It is
TABLE 1

¹he values of non-dimensional frequencies at the bifurcation points

Present analysis
Reference [30] Reference [32]

Beam �"0 Shaft �"5
Model

of the system B
�

B
�

B
�

B
�

B
�

B
�

B
�

EM 1)446}1)451 1)439}1)442 1)444 1)544 1)550 1)546 1)552
¹M * * 1)390 1)440 1)497 1)474 1)552



Figure 3. Periodic orbits at point s"l/4; paths B
�
B

�
and B

�
B



.
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possible to compare the present results with the results obtained in references [30, 32] for
the Euler-type beam with circular and rectangular cross-sections. In these cited works, the
frequency range with the bifurcation point was given.
It is very interesting to consider the trajectories of an arbitrary point on the shaft (e.g.,

point s"l/4) corresponding to the points on the post-bifurcation paths. They illustrate
the process of changing of the vibration modes. These trajectories, which are shown in
Figure 3 (for the paths B

�
B

�
and B

�
B


), were found by the numerical integration of the

ordinary di!erential equations (39) obtained after spatial discretization. The corresponding
initial conditions have been calculated by the approximate method using the matrix
equation of amplitudes. A very good repeatability of the trajectories (integration in time
corresponding to 50 periods) is an additional proof of a good convergence of the
approximate analysis. Trajectories corresponding to the points lying on the paths B

�
B
�
and

B
�
B
�
are in qualitative substance very close to paths obtained for B

�
B



and B

�
B

�
respectively.

4.2. SELF-EXCITED VIBRATIONS

4.2.1. In-uence of the rotation speed

In reference [5] Shaw and Shaw analyzed the in#uence of internal and external damping
as well as the rotation speed on the amplitude of simply supported shaft modelled as an
Euler beam. An analysis of the results of this study shows that two parameters considerably
in#uence the stability regions and the characteristics of steady state vibrations of the system.
The "rst is the non-dimensional coe$cient �"�y

�
/�y

�
, de"ned as the ratio of

non-dimensional external damping coe$cient �y
�
"�

�
/�A�

�
to non-dimensional coe$cient

of internal damping �y
�
"�

�
�

�
. Here �A is the mass per unit length of the shaft. The second

parameter is the ratio �"�
�
/�

�
of the rotation speed to the lowest frequency of the shaft at

rest. In studying the limit cycles corresponding to higher modes of vibration, it is convenient
to use parameters �

�
and �

�
, de"ned in a similar way, with respect to the nth frequency�

�
of

the linear system.
It has been proved in reference [5] for a simpli"ed shaft model, that in the absence of

external damping (�
�
"0), for �

�
'1 synchronous vibration is excited (�"�/�

�
"1) and

that the amplitude of vibration de"ned as the maximum displacement value is independent



TABLE 2

Amplitudes of self-excited oscillations of a simply supported shaft

Reference [5] Present analysis

Euler model �"500 �"25

Mode �"2 �"5 �"10 �"2 �"5 �"10 �"2 �"5 �"10

First 3)464 9)798 19)900 3)465 9)798 19)902 3)416 4)465 4)475
Second * 1)500 4)583 * 1)500 4)582 * 1)485 2)337
Third * * 0)969 * * 0)969 * * 1)036

Figure 4. In#uence of the rotation speed for simply supported shaft: (a) frequency; (b) amplitude. Key: ) ) ) ), Euler
model; - - - -, �"100; **, �"50.
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of the magnitude of internal damping. The value of the amplitude relative to the shaft radius
of inertia � is given by the simple formula

a
�
/�"2���

�
!1 . (55)

This case (�"0) is used as a benchmark solution to test the convergence of the present
method. The amplitudes have been calculated for three di!erent values of the rotation speed
choosing the values of parameter � such that one, two or three modes of self-excited
oscillation are exited. Results thus obtained are shown in Table 2.
The general model described by equations (19) and (21) has been used in the calculations,

which accounts for the coupling between the #exural, longitudinal and torsional vibrations.
The Euler case is obtained by increasing the value of the parameter �. The very good
agreement for very large values of � with equation (55) veri"es the model used and good
convergence.
Considerable discrepancy of results is observed in the case of short shafts (�"25), when

the results obtained from the Timoshenko model are more realistic than those obtained on
the basis of those analyzed in the reference [5] Euler model. These discrepancies are also
visible in Figure 4, which shows the dependence of frequency and amplitude versus the
rotation speed for the "rst (symmetric) and second (non-symmetric) vibration modes. The
plots shown illustrate the behavior of the models, for di!erent values of the parameters
� (50, 100), for the established value of coe$cient �"0)1.
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For rotation speeds which are only slightly above the critical value, the results from the
simpli"ed model [5] and those obtained using equations (19) and (21) are identical. The
discrepancies for a given mode (e.g., the "rst mode) start to show in the range of the rotation
speed which includes the next critical speed (second in Figure 4).
From the results obtained for the Euler model (the dotted lines), practically linear

dependence of the frequency of vibration on the rotation speed is predicted, and the
frequencies of the two modes being considered are very close for small values of the
parameter �. In the absence of external damping when the coe$cient �"0, di!erent modes
of self-excited oscillations with the same frequency equal to the shaft rotation speed (the
synchronous vibration) theoretically are possible. The non-dimensional value of the
amplitude increases greatly with the increase of the rotation speed. Because the
non-dimensional amplitude is related to the radius of inertia of the shaft cross-section,
especially in the case of short shafts, large displacements can be excited in the process of
self-excited vibration.
Di!erent results are obtained in this range of the rotation speed by applying the

Timoshenko model, but in this case it is also important to take into account the coupling
between the #exural modes and the mostly torsional ones. For the rotation speed above the
second critical speed (�+4) the amplitude and frequency of the "rst vibration mode tends
to settle down, as shown in Figure 4. For the rotation speed above the next critical speed
(�+9) the frequency and amplitude of the second vibration mode also tend to settle down.
One can also observe important di!erence for models with di!erent values of the parameter
�*the non-dimensional amplitudes of short shafts (�"50) are a little lower than in the
case of slender shafts (�"100).
In the explanation of the above results, there is an important contribution of the

non-linear term 	�
�
M, which appears in the second of equations (19), and which in#uences

the torsional deformations of the shaft in the presence of internal damping (through matrix
U in the second of equations (21)). This term has an interpretation of the cross-product of
the vector 	

�
and the moment vector M. When the e!ect of internal damping and the

rotation speed can be neglected, the components of the moments vector depend linearly on
the components of the vector 	

�
. In this case the equation of the torsional vibration does not

depend on the #exural displacements of the shaft.

4.2.2. In-uence of damping

To illustrate the in#uence of damping Figure 5 shows the dependence of non-dimensional
frequency of vibration on the parameter �. The results shown explore the case of a simply
supported shaft with the coe$cient �"6. For this value of the rotation speed two modes of
the self-excited vibration can be excited. The values of frequency and amplitudes (not shown
here) of vibration decrease when the values of parameter � increases. This fact con"rms the
results obtained in reference [5]. The center manifold theory applied in the cited paper
shows that both the limit cycles are stable. However, the authors pointed out that for the
small values of the parameter � the dominant unstable character of the "rst mode occured.
The accuracy of the solutions discussed above and their stability can be veri"ed by

performing the numerical integration of the system of di!erential equations (39). The results
of these calculations depend on the initial conditions. On the basis of such numerical
calculations, the ranges of the stable solutions were marked (Figure 5).
The solutions shown in Figures 6 and 7 were obtained by assuming two di!erent variants

of initial conditions. In the "rst variant, zero displacements were assumed and the initial
velocities were chosen in such a way as to easily excite the "rst or the second vibration
mode. In the second case, the initial conditions were taken from the solutions obtained by



Figure 5. In#uence of the parameter � on the frequency of self-excited stable (**) and unstable ( - - - - )
vibration.

Figure 6. In#uence of the co-e$cients �y
�
and �y

�
on the phase trajectories for the "rst vibration mode: (a)

�y
�
"�y

�
"0)02; (b) �y

�
"�y

�
"0)04.

Figure 7. In#uence of the parameters � on the phase trajectories for the second vibration mode: (a) �y
�
"0)02,

�y
�
"0)002; (b) �y

�
"0)02, �y

�
"0)04.
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the method of analysis discussed above by proportionally increasing the velocities in one of
the transverse directions. Both variants can be interpreted as applying a properly chosen
impulsive excitation, which in the "rst variant acts on the undeformed shaft and in the
second variant disturbs the steady state condition. In presenting the results the
characteristics are limited to being shown at one point at a distance equal to 1/4 of the shaft
axis from the end. This choice is motivated by the fact that the second mode of self-excited
oscillations is antisymmetric for the type of boundary conditions in question and has
a nodal point in the middle of the shaft.
Figures 6 and 7 show the phase portraits of the transverse displacement de"ned as the

distance of the analyzed point from the undeformed axis of the shaft (R�"u�
�
#u�

�
). Figure

6 illustrates the process of the setting of the "rst mode of self-excited vibration for a "xed
value of the parameter �"1 and for two di!erent values of the coe$cient �y

�
"�y

�
(0)02,

0)04). The phase trajectories converge to the point which agrees with the result obtained by
the approximation method. The behaviour of the phase trajectories is in#uenced not only
by the value of the coe$cient �, but the parameters �y

�
and �y

�
which have had no e!ect on the

results up to this point. The values of the internal and external damping in#uence, in the
"rst instance, the time of setting of the self-excited oscillations. For lower damping values
the time necessary to reach the limit cycle becomes much longer. The precise determination
by the method of direct integration of the amplitudes of the self-excited vibration takes
much more time than by the approximation method.
For small values of the parameter � the lowest mode is dominant, whereas for su$ciently

high values of � higher modes dominate. This conclusion is con"rmed by the phase portraits
shown in Figure 7, which concern the second mode of self-excited vibration, for two values
of the � and for "xed values of �y

�
"0)02 and �"6. For �"2 (Figure 7b) the phase

trajectories tend for both types of initial conditions to the same point. The second mode of
vibration is stable.
For �"0)1 (Figure 7(a)), even though the initial conditions are chosen to favour the

excitation of the second mode, the lowest mode sets in eventually. The phase trajectories
have in this case very complex shapes. The shape of the initial phase of this process is shown
in Figure 7(a) (showing the complete process of reaching the limit cycle would obscure the
plot). The solution tends "rst to the value corresponding to the second non-symmetric
mode of vibration. However, as time increases the e!ect of the symmetric mode becomes
more and more visible, and "nally (which is not shown in Figure 7(a)) steady state vibration
with the "rst mode is established. For high values of the parameter � the case is the opposite,
and a higher possibility exists of producing higher vibration modes. The total process of
establishing of the suitable mode of vibrations is visible in Figures 8(a) and 8(b). These
"gures show the time plots for �"0)1 and 2. Two version of the "rst variant of the initial
conditions were assumed. These versions are correspondingly favorable for excitation of the
"rst and the second mode of vibrations. In the process of changing of the modes of
vibrations the trajectories of movement, in chosen intervals of time, are very close to the
trajectories shown in Figure 3.

4.2.3. In-uence of the torque

From the linear analysis of a shaft with an applied torque it is possible to show that for
a su$ciently high value of the torque, the shaft can lose stability by divergence or by #utter.
However, in the case of a shaft which is symmetrically restrained at both ends, e.g., the
clamped}clamped case, for the torque values of physical importance one obtains stable
solutions which lie inside the stability region. In practice, only by taking into account the
internal damping can one show that the self-excited oscillations appear in the system [4].



Figure 8. Time histories of R at point s"l/4: (a) �y
�
"0)02, �y

�
"0)002; (b) �y

�
"0)02, �y

�
"0)04.

Figure 9. In#uence of the torque for clamped}hinged shaft: amplitude versus parameter �.
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For this case, the presence of the torque has only a small e!ect on the position of the
boundaries of the stability region.
A di!erent situation is encountered in the case of a non-symmetrically restrained shaft,

e.g., for the case of a shaft clamped at the left end and simply supported at the right end. An
important parameter which determines the position of the stability boundaries is the ratio
�"My

�
/�y

�
of the non-dimensional torque My

�
"M

�
/EI to the non-dimensional external

damping �y
�
. The e!ect of the torque is di!erent depending on its point of application. The

result will be di!erent if the torque is applied at the clamped support from the case when it is
applied at the simply supported end. The linear analysis of the stability regions indicates
that, for small values of external damping, the e!ect of the torque applied at the clamped
end substantially lowers the critical speed.
Figure 9 shows the dependence of the amplitude of vibration on the parameter �, which

characterizes the damping in the system. The results shown have been obtained for the value
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of parameter �"25 and for the rotation speed �"2 which is high enough to ensure that
only the "rst mode can get excited. With increasing the external damping (the parameter �)
the amplitude gets smaller. For positive values of the parameter � (which corresponds to the
case of the torque applied at the simply supported end), for already relatively small values of
� the amplitude of the "rst mode reaches zero. For negative values of �, the range of the "rst
mode of self-excited vibration is much broader.

5. CONCLUSIONS

The proposed approach to the modelling of rotating shafts allows for a simple and clear
prediction of the matrix equation of motion of the system and proves to be easy to apply in
numerical analysis. The application of the Kronecker product to the notation of
non-linearities allows one to write the matrix equation of amplitudes which is the base for
the prediction of amplitude}frequency dependences for free, forced and self-excited
vibrations. The advantages of the way of descriptions and the methods presented in the
paper are especially suitable for the coupled #exural, torsional and longitudinal vibrations
with the in#uence of shear and some statical loadings, as well as for slender shafts. By
application of these methods it is easy to predict the tangent matrix which can be very
helpful in Newton-like methods, and also in detecting bifurcation points and secondary
branches of solutions.
The results of the analyses of di!erent dynamic problems for rotating shafts discussed in

the paper, con"rms the high e!ectiveness of the method and its applicability especially to
some more complex cases di$cult to analyze by analytical methods. The results of the
calculations have shown some great di!erences, including qualitative ones, in relation to
published papers using Euler-type models.
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APPENDIX A

The matrices A �
�
, which describe the linear part of the equations of motion are expressed

as
A�

�
"diag (B

�
,B

�
, 0, 0)
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A�
�
"

�
�
I 0 0 0

0 B
�

0 0

0 !�
�
e�
�

0 0

0 0 0 0

, A�
�
"

0 0 0 0

0 0 0 0

!�
�
I 0 0 0

0 !�
�
I 0 0

,

A�
�
"

0 0 0 0

0 N

�
e
�

!e
�

0

0 !Ue�
�

J��
�

0

0 0 0 J��
�

, A�
�
"

0 N

�

!I 0

N

�

M

�

0 !I

!U 0 0 0

0 !U 0 0

.

It is convenient to write the matrices describing the non-linear terms of the equations of
motion in the form

F ��
�


"�
G ��

�

H ��

�

� .

Here G ��
��
, H ��

��
describe the non-linearities given by equations (19) and relations (21)

respectively. The matricesG ��
��
have the form (to simplify notation one omits the argument

of the matrix functions f�� when this argument is the unit matrix):

G��
��

"�
0

f
��
(e�

�
)!�

�
N


�
f
��
(e�

�
)� , G��

��
"�

f
��

!f
��

#f
��
(N


�
)!�

�
M


�
f
��

f
��

#f
��

!N

�
f
��

!�
�
M


�
f
��
� ,

G��
��

"�
0

f
��
(B

�
)� , G��

��
"�

0
�
�
B

�
f
��
� , G��

��
"�

0

!�
�
B
�
f
��
� .

The matrices G�

��
are given by the following equations:

H��
��

"�
�
�
f
��
(e�

�
)#�

�
g
��
(e� �

�
)

0 � , H��
��

"�
!�

�
g
��

!�
�
g
��
(J

�
)

!e�
�
Uf

��
� ,

H��
��

"�
Uf

��
#g

��
(e�

�
)

�
�
Uf

��
#e�

�
U[e�

�
f
��

!f
��
(e�

�
)]� .

The above expressions can be used, for the assumed Voigt}Kelvin model of damping, to
determine the matrices H ��

��
, H ��

��
as

H ��
��

"H ��
��

"�
�
H ��

��
(I)

after replacing in all the respective formulae the matrix U with the unit matrix I.

APPENDIX B: NOMENCLATURE

SCALAR QUANTITIES

E, G, K Young's and shear moduli, shear factor
� mass density
A, I, l cross-sectional area, moment of inertia, rod length
�, � radius of inertia, slenderness co-e$cient
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�
�
, �

�
internal and external damping co-e$cient

� non-dimensional damping parameter
�

�
, � rotation speed, non-dimensional rotation speed

N
�
, M

�
axial force, torque

�, � frequency, non-dimensional frequency
x
�
, s"x

�
co-ordinates, natural co-ordinate

t time

VECTORS (COLUMN MATRICES)

e
� 	� 

, e

�
"e

� 	�

unit vector of dimension N

i
�
, g

�
, t

�
base vectors of a co-ordinate system

� displacement vector in the body frame
�, �, �

�
angular velocity vectors

�
�
, �

�
, �

�
strain measure vectors

�, � vectors made of the components of the strain and stress tensors
u, 
 displacement and rotation vectors
n, N vectors of internal forces
m, M vectors of internal moments
N

�
, M

�
vectors of constant loads

x, y state vector
a amplitude vector
v (s) vector of shape functions
w(t) vector of approximating functions

MATRICES

( .
 ) skew-symmetric matrix related to the corresponding vector
I
	�

, I"I

	�

unit matrix of dimension N

�, �, � rotation matrices
A�

�
, A

�
, A square matrices describing the linear part of the equation

F ��
�

, F

�

, F rectangular matrices describing the non-linear part of the equation

J
�
, B

�
, B

�
sti!ness, inertia and gyroscopic matrices

E diagonal matrix, depending on Young's and shear moduli
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